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TÜBİTAK—Marmara Research Center, Research Institute for Basic Sciences, Department of
Physics, 41470 Gebze, Turkey

Received 5 June 1995, in final form 9 October 1995

Abstract. The Weierstrassian℘, ζ and σ functions are generalized toRn. The n = 3 and
n = 4 cases have already been used in instanton solutions which may be interpreted as explicit
realizations of spacetime foam and the monopole condensate, respectively. The new functions
satisfy higher dimensional versions of the periodicity properties and Legendre’s relations obeyed
by their familiar complex counterparts. Forn = 4, the construction reproduces functions found
earlier by Fueter using quaternionic methods. Integrating over lattice points along all directions
but two, one recovers the original Weierstrassian elliptic functions.

Kaluza–Klein, supergravity, string and superstring theories and superp-branes all involve
dimensions beyond four, which then have to be compactified. The compactification results
in lattices in the higher dimensions [1]. It might therefore be of interest to consider
generalizations of doubly periodic functions to arbitraryRn. The R4 case has already been
treated by Fueter [2], who succeeded in obtaining quaternionic analogues of Weierstrassian
elliptic functions. In this letter, we will present a unique and straightforward extension
of Fueter’s results toRn. This general construction yields Fueter’s functions inn = 4
without requiring the use of quaternions. Furthermore, when one takes infinitesimal lattice
spacings in all but two lattice directions and integrates over these points one recovers the
usual Weierstrassian functions.

Apart from possible future physics applications ofn-tuply periodic functions, it is worth
noting that (quasi)periodic classical solutions of gravity and Yang–Mills theory have already
been considered. Thus, inspired by Rossi’s observation [3] that a singly periodic instanton
configuration represents aBPSmonopole [4], Gursey and Tze [5] used Fueter’s hyperelliptic
functions to construct a solution with one Yang–Mills instanton per spacetime cell. This
solution may be related to the monopole condensate [6] or to the Copenhagen vacuum [7],
which is also based on a periodic arrangement of the theory’s solitons. Hawking, on
the other hand, argued [8] that metrics with a single gravitational instanton per unit cell
make the dominant contribution to the path integral of Einstein’s gravity. An adaptation
of Weierstrassianσ andζ functions to three dimensions [9] along the lines presented here
leads to just such a self-dual solution, providing an explicit example of a ‘spacetime foam’
based on Gibbons–Hawking multicentre metrics [10].

We start by examining how the infinite sums defining the Weierstrassian functions are
made to converge. These are

℘(z) = 1

z2
+

∑
ω 6=0
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1

(z − ω)2
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ω2

}
(1)
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ζ(z) = −
∫

℘(z) dz = 1
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ω
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}
(2)

ρ(z) ≡ ln σ(z) =
∫

dz ζ(z) = ln(z) +
∑
ω 6=0

{
ln(z − ω) − ln(−ω) + z

ω
+ z2

2ω2

}
(3)

or,

ρ(z) = ln(z) +
∑
ω 6=0

{
ln

(
1 − z

ω

)
+ z

ω
+ z2

2ω2

}
. (4)

In the aboveω = n1ω1 + n2ω2, with (ω1, ω2) defining the basic lattice cellC. The
parentheses{ } ensure that each term in the sum is absolutely convergent; the series become
meaningless if the parentheses are broken up and the terms they contain are separately
summed. An efficient method for studying the convergence properties of (1)–(3) is provided
by an integral test in which the double sum is replaced by

∫ ∞
|ω|min

d|ω| |ω|. This reveals why
one, two and three subtraction terms are needed in (1), (2) and (3), respectively. Employing
a simple dimensional argument, one can proceed further and determine the precise forms of
the subtraction terms, given only the first term in the sum (3), for example. To do this, we
note (i) theρ is dimensionless (assigning the dimension of length to the coordinatez, say);
(ii) in the power series expansion of (4), the highest power ofω permitted by convergence
requirements isω−3. One then realizes that the subtraction terms following ln(1 − z/ω)

must be chosen so thatρ(z) has the expansion

ρ(z) = ln z +
∑
ω 6=0

O

(
z3

ω3

)
+ · · · . (5)

Hence using the power series

ln(1 − z/ω) = −z/ω − z2/2ω2 − z3/3ω3 − · · · (6)

one chooses the three subtraction terms

− ln(−ω) + z/ω + z2/2ω2 (7)

to arrive at the form (5). This will be the key in constructingRn analogues ofρ(z).

We will later need the well known facts that℘(z) is doubly periodic whileζ(z) and
σ(z) are quasiperiodic with the transformation properties

ζ(z + ω1,2) = ζ(z) + η1,2 (8)

and

σ(z + ω1,2) = −σ(z) expη1,2(z + ω1,2/2) (9)

whereη1,2 = 2ζ(ω1,2/2).
We also record the so-called Legendre’s relations∮

∂C
ζ(z) dz = 2π i (10)

and ∮
∂C

ζ(z) dz = 2π i = η1ω2 − η2ω1 . (11)

We first rewrite (10) in the rather unconventional form reminiscent of Gauss’s theorem∫ ∫
C

dV ∇2ρ(z) =
∮

∂C
dEσ · E∇ρ(z) = 2π (12)
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where dV = dx dy and the ‘surface element’ dEσ = n̂ dl. Here dl is the arclength and̂n a
unit normal vector pointing outwards on∂C.

Let us next introduce the lattice basis vectorsq(a)
µ , wherea, µ = 1, . . . , n. The volume

of the unit cellC is given by

Vn = 1

n!
εa1...an

εµ1...µnq(a1)
µ1

. . . q(an)
µn

. (13)

The basis vectors of the reciprocal lattice obey

r(a)
µ q(b)

µ ≡ r(a) · q(b) = δab . (14)

They are obtained from theq(a)
µ via

r(a1)
µ1

= 1

n!Vn

εa1...an
εµ1...µnq(a2)

µ2
. . . q(an)

µn
. (15)

We now seek higher dimensional versions of (12) in the form∫
C

dVn∂µ∂µρn(x) =
∮

∂C
dσµ∂µρn(x) = −

∫
dωn (16)

where, of course,∫
dωn ≡ �n = 2πn/2/0(n/2) . (17)

In order to obtain the result (16), the functionρn(x), which is to serve as the analogue of
ρ(z), should have the form

ρn(x) ∝ Gn(x) +
∑

· · ·
∑
q 6=0

Gn(x − q) + (Rn harmonics) . (18)

In equation (18),Gn(x) is the Green’s function forRn obeying

∂µ∂µ Gn(x) = −�nδ(x1) . . . δ(xn) ≡ −�nδ(x) (19)

and

q = n1q
(1) + · · · + nnq

(n). (20)

We have, of course,

Gn(x − q) = 1

(x2 − 2xq + q2)
n−2

2

= 1

|x − q|n−2
(n > 2) (21)

where q2 ≡ |q|2 and x2 ≡ |x|2. The harmonics in (18) should now be chosen
according to the general strategy outlined between equations (4) and (8). Thus in order
to render convergent the sum (18), whose integral counterpart contains terms behaving
like

∫ ∞
|q|min

d|q| |q|n−1/|q|n−2, one again needs three subtraction terms. These are in fact
nothing but the first three terms in the MacLaurin expansion of (21) for|x| � |q|min. This
immediately leads to

ρn(x) = 1

(x2)
n−2

2

+
∑

· · ·
∑
q 6=0

{
1

|x − q|n−2

− 1

|q|n−2

[
1 + (n − 2)

q2

(
qx + 1

2q2

(
n(qx)2 − q2x2

))]}
. (22)

Again, absolute convergence is attained only by considering each term defined by the
outermost parentheses as an indivisible unit. Hence the terms proportional toqx and to
1/2q2 cannot be summed separately (in which case they would appear to give zero by
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symmetry!) anymore than theω−1 term in (2) can. Note that the subtraction terms are
indeed harmonics as anticipated in (18).

This is perhaps an appropriate point to compare our results with Fueter’s. Fueter
introduces the unit quaternionseµ andēµ corresponding to(I, ei ) and(I, −ei ), respectively.
We have, as usual,eiej = −δij + εijkek, the indicesi, j, k running from 1 to 3. Using
these, one definesx = xµeµ, x̄ = xµēµ, D = eµ∂µ andD̄ = ēµ∂µ. One then hasx2 = x̄x
andD̄D = ∂µ∂µ. Then, starting with the function

Z(x) = 1

x
+

∑
q 6=0

{
1

x − q
+ 1

q
+ 1

q
x

1

q
+ 1

q
x

1

q
x

1

q
+ 1

q
x

1

q
x

1

q
x

1

q

}
(23)

whereq = naq
(a) = naq

(a)
µ eµ, theq(a) being lattice vectors, one arrives at the quaternionic

version of Weierstrass’sζ(z) via

ζF (x) = ∂µ∂µZ(x) . (24)

We will see later that (24) indeed transforms the same way asζ(z) under lattice shifts. The
function corresponding to lnσ(z) is

ρ(x) = DZ(x) (25)

and, remarkably, it turns out to have the quaternion-free form

ρ(x) = 1

x2
+

∑
q 6=0

{
1

(x − q)2
− 1

q2
− 2xq

q4
− 1

q6
(4(qx)2 − q2x2)

}
(26)

coinciding with then = 4 case of (22).
Returning next to (12), we see that the analogue ofζ(z) is then-gradient

ζ (n)
µ (x) = ∂µρn(x) . (27)

Taking n = 4 and contracting both sides with the quaternion unitsēµ, we recover theζF

function of Fueter [2]

ζF = ēµ ∂µ ρ4 = D̄ρ4 . (28)

Leaving the quaternionic special case aside, let us now find the higher dimensional
analogues of (8) and (9). Since

∂µ∂µ ρn = ∂µ ζ (n)
µ = −�n

∑
· · ·

∑
δ(x − q) (29)

is a perfectlyn-tuply periodic distribution, a shift by a lattice basis vector can only change
ζ (n)
µ by a constant vector. Thus

ζ (n)
µ (x + q(a)) = ζ (n)

µ (x) + η(n)(a)
µ . (30)

This is indeed the transformation law forζF whenn = 4. Puttingx = −q(a)/2 and noting
that ζ (n)

µ (−x) = −ζ (n)
µ (x), we find

2ζ (n)
µ (q(a)/2) = η(n)(a)

µ . (31)

Integrating (30) and usingρn(−x) = ρn(x), we obtain

ρn(x + q(a)) = ρn(x) + η(n)(a)(x + q(a)/2) (32)

where there is no sum on the index(a) on the right-hand side. Using equation (30), we can
also obtain the higher dimensional form of Legendre’s second relation (11). Let us evaluate∮
∂C dσµ ζ (n)

µ (x), where∂C is the surface of the fundamental hyperparallelepiped. Noting
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that the normal to the hyperplane defined by{q(a2), . . . , q(an)} is along the reciprocal vector
r(a1) given in (15), we find

Vn

n∑
a=1

η(n)(a)r(a) = �n = 2πn/2

0(n/2)
(33)

as then-dimensional generalization of Legendre’s second relation.
There is an interesting relationship betweenρn and ρn−1 which can be iterated until

one finally arrives at the Weierstrassian elliptic functions. It is simplest to describe this
relationship in the case of a rectangular lattice although it is generally valid. Starting with
ρn, one first chooses one lattice direction to coincide with, say, thexn axis and then lets
the lattice spacing (in the same direction only) become infinitesimal. Then, integrating over
qn, one obtainsρn−1 up to a multiplicative constant. Repeating this procedure untilρ3 is
found, one finally has

−
∫ ∞

−∞
dq3 ρ3 = ρ(z) + ρ(z̄) =

∫
dz ζ(z) +

∫
dz̄ ζ(z̄) (34)

where the remaining lattice basis vectors(Eq(1), Eq(2)) provide the periods(ω1, ω2). Thus the
ρn presented here are indeed intimately connected with Weierstrassian functions. We also
observe that the split into an analytic and anti-analytic part is a feature of two dimensions,
not shared, for example, by Fueter’s quaternionic functions.

Finally, the reader may wonder how theRn counterpart of℘(z) is to be defined. It is
clear that two derivatives ofρn(x) will be involved. It is natural to classify the resulting
functions according to theirSO(n) transformation properties. One has the symmetric
traceless second-rankSO(n) tensor

℘(n)
µν ≡

(
∂µ∂ν − δµν

n
∂λ∂λ

)
ρn(x) (35)

and theSO(n) scalar

π(n) ≡ ∂λ∂λ ρn = −�n

∑
· · ·

∑
δ(x − q) (36)

already encountered in (29). Although both (35) and (36) are fullyn-tuply periodic, the
former involves true functions while the latter is ann-fold sum over distributions.℘(n)

µν is
also similar to℘(z) in that∮

∂C
dσµ ℘(n)

µν =
∫

C
dVn ∂µ℘(n)

µν = 0 (37)

just like ℘(z) which obeys∮
∂C

℘(z) dz = 0 . (38)

To summarize, we have constructed functions which: (i) reproduce inRn the
transformation properties under lattice shifts of the Weierstrassian functions, (ii) obey
natural Rn generalizations of the two Legendre relations, (iii) reduce to the real parts
of Weierstrassian functions upon an(n − 2)-fold integration over lattice points, (iv) yield
Fueter’s earlier results (obtained by using quaternions) inn = 4. The generalization is based
upon recognizing that lnσ(z) consists of a sum of Green’s functions of the two-dimensional
Laplacian over the lattice points, minus three harmonic subtraction terms per lattice point
which serve to render the lattice sum convergent. As mentioned in the second paragraph,
then = 2, 3, 4 cases have already been used to model the non-perturbative ground states of
Yang–Mills and Einstein theories as a ‘foam’ of topological solitons characteristic of those



L22 Letter to the Editor

particular dimensions. The cases 66 n 6 22 may prove relevant in superstring, Kaluza–
Klein, supergravity,p-brane or bosonic string theories in which dimensions beyond 4
are compactified, effectively leading to the periodicity of functions in the corresponding
coordinates.

I am grateful to A Aliyev, O F Dayi, C Delale and Y Nutku for patiently instructing me
in the use of LATEX and to my colleagues at the MRC for their hospitality. I should like to
thank the referee for bringing to my attention references [11, 12] in which Clifford algebra
techniques for the construction of other higher dimensional special functions are employed.
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